Silver Prize, Make for the Planet

image
image

"Scoutbot Kuching" is a semi-autonomous boat that is targeted to monitor marine protected areas, or map shallow coral reefs. It has both remote control (RC) capacity as well as route planning using the Pixhawk microcontroller.

  • Footprint: 1.2m x 1.0m x 0.4m
  • Weight: <10kg
  • Speed: 0.5m/s for Auto mission (2.0m/s max)
  • Runtime: 4S (14.8V) 10000mAH
  • 1 hour Coverage = 7000m2/hour; ~340 pictures (assuming 5m depth water)
  • Image Resolution: 0.3 - 2cm/pixel (GoPro). Can upgrade better camera or multi-spectral
  • Depth of observation: Observe from 0.5m to 10m depending on visibility
  • Control/Telemetry Range: 2km (Recommend to add a front facing real time image transmission system if moving beyond line of sight), Manual Override, Auto Return Home
  • Optional Features: Obstacle Avoidance, Environmental Sensors, Real time telemetry sync to cloud
  • Servicing: Ship back defective module to be replaced
  • Hardware Cost: <1000 USD
  • Time to build: 4 days with 3 experienced fabricators + 1 young assistant
  • image
image

This project was built by the Scoutbots team ( Cesar Jung-Harada , Ken & Joe Chew, Eddie Yung) for the Make4ThePlanet Hackathon by Conservation X Lab , during the IMCC5 (5th International Marine Conservation Congress) in Kuching, Sarawak, Malaysia between June 24-28 2018. More prototypes by the Scoutbots team here .

All life as we know it comes from the ocean, yet the oceans are under threat. Marine Protected Areas (MPAs) are one of the most effective and low-cost ways to protect our oceans while making them more productive and financially profitable. Currently only about 3% of our ocean has strongly protected waters while scientists agree that 30% are necessary for a sustainable ocean. We have a long way to go to create more MPA, monitor and enforce them. The brief was presented by former NOAA Administrator Jane Lubchenco below.

"There is broad acceptance of “green parks” on land, but demonstrating positive impacts that ultimately effect nearby communities with “blue parks” remains a challenge.

MPAs are constrained by three major factors in public opinion:

  1. Lack of awareness about the low area coverage of MPAs;
  2. Lack of knowledge and awareness of massive conservation benefits of fully protected MPAs;
  3. Lack of knowledge and understanding that those benefits spill out to adjacent areas and help make the oceans more resilient.

MPAs are further constrained by forces that impact their existence and efficacy:

  1. Commercial interests and small-scale fishers and communities who use the ocean now see MPAs as a negative, as a loss, and not an investment in the future;
  2. In some communities, community-based management projects offer some respite for depleted ecosystems and populations, but they require clearly delineated rights, and may not scale beyond the community;
  3. Real-time monitoring and enforcement remains a critical challenge that while technology exists, action is much less frequent and politically

1. LOCAL AWARENESS SYSTEMHow might we create tools and systems to not only raise local awareness of the (ecological, cultural, and financial) benefits of MPAs, but also make sure that the protected areas maintain a viable ecosystem with healthy populations of marine life?

2. MONITORING & ENFORCEMENTWhat kinds of scalable tools and systems can accurately monitor and enforce the protection of MPAs in new ways, so that “enforcement” is not perceived as yet another reason for powerful lobbies to view MPAs as negative? What kinds of functions can these technologies help augment and improve the functions of policy makers and managers of MPAs?

3. FINE-GRAIN MARINE SPATIAL PLANNINGWhat are the tools and systems needed formulti- stakeholder sustainable use of MPAs (cultural, economic, and environmental)? How might we create tools to design MPAs like how terrestrial multi-use protected areas are designed – what are the ecologically relevant spaces, what are the spaces for multi-use, how do you design for both economic outcomes & protection of marine life?"

In this slideshow, we explain why created this surface marine drone: to monitor Marine Protected Areas (MPAs) and map coral reefs. This is a platform technology and can be used for many purposes, easily extended as it is open source.

if you want to know a lot more about coral reefs and fishery decline around the world, you can read on here:

"Coral reefs could be gone in 30 years" By Laura Parker and Craig Welch PUBLISHED JUNE 23, 2017https://news.nationalgeographic.com/2017/06/coral-...

"One of the World's Biggest Fisheries Is on the Verge of Collapse Major disputes in the South China Sea are putting critical habitat—and the food supply of millions—at risk." https://news.nationalgeographic.com/2016/08/wildl...

image